7 research outputs found

    Predicting COVID-19 outcomes from clinical and laboratory parameters in an intensive care facility during the second wave of the pandemic in South Africa

    Get PDF
    Background: The second wave of coronavirus disease 2019 (COVID-19) in South Africa was caused by the Beta variant of severe acute respiratory syndrome coronavirurus-2. This study aimed to explore clinical and biochemical parameters that could predict outcome in patients with COVID-19. Methods: A prospective study was conducted between 5 November 2020 and 30 April 2021 among patients with confirmed COVID-19 admitted to the intensive care unit (ICU) of a tertiary hospital. The Cox proportional hazards model in Stata 16 was used to assess risk factors associated with survival or death. Factors with P<0.05 were considered significant. Results: Patients who died were found to have significantly lower median pH (P<0.001), higher median arterial partial pressure of carbon dioxide (P<0.001), higher D-dimer levels (P=0.001), higher troponin T levels (P=0.001), higher N-terminal-prohormone B-type natriuretic peptide levels (P=0.007) and higher C-reactive protein levels (P=0.010) compared with patients who survived. Increased standard bicarbonate (HCO3std) was associated with lower risk of death (hazard ratio 0.96, 95% confidence interval 0.93–0.99). Conclusions: The mortality of patients with COVID-19 admitted to the ICU was associated with elevated D-dimer and a low HCO3std level. Large studies are warranted to increase the identification of patients at risk of poor prognosis, and to improve the clinical approach

    Latent class analysis: an innovative approach for identification of clinical and laboratory markers of disease severity among COVID-19 patients admitted to the intensive care unit

    Get PDF
    Objective: The aim of this study was to identify clinical and laboratory phenotype distribution patterns and their usefulness as prognostic markers in COVID-19 patients admitted to the intensive care unit (ICU) at Tygerberg Hospital, Cape Town. Methods and results: A latent class analysis (LCA) model was applied in a prospective, observational cohort study. Data from 343 COVID-19 patients were analysed. Two distinct phenotypes (1 and 2) were identified, comprising 68.46% and 31.54% of patients, respectively. The phenotype 2 patients were characterized by increased coagulopathy markers (D-dimer, median value 1.73 ng/L vs 0.94 ng/L; p < 0.001), end-organ dysfunction (creatinine, median value 79 µmol/L vs 69.5 µmol/L; p < 0.003), under-perfusion markers (lactate, median value 1.60 mmol/L vs 1.20 mmol/L; p < 0.001), abnormal cardiac function markers (median N‐terminal pro‐brain natriuretic peptide (NT-proBNP) 314 pg/ml vs 63.5 pg/ml; p < 0.001 and median high‐sensitivity cardiac troponin (Hs-TropT) 39 ng/L vs 12 ng/L; p < 0.001), and acute inflammatory syndrome (median neutrophil-to-lymphocyte ratio 15.08 vs 8.68; p < 0.001 and median monocyte value 0.68 × 109/L vs 0.45 × 109/L; p < 0.001). Conclusion: The identification of COVID-19 phenotypes and sub-phenotypes in ICU patients could help as a prognostic marker in the day-to-day management of COVID-19 patients admitted to the ICU

    Comparison of patients with severe COVID-19 admitted to an intensive care unit in South Africa during the first and second wave of the COVID-19 pandemic

    Get PDF
    BACKGROUND: The second wave of coronavirus disease 2019 (COVID‑19), dominated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant, has been reported to be associated with increased severity in South Africa (SA). OBJECTIVES: To describe and compare clinical characteristics, management and outcomes of COVID‑19 patients admitted to an intensive care unit (ICU) in SA during the first and second waves. METHODS: In a prospective, single-centre, descriptive study, we compared all patients with severe COVID‑19 admitted to ICU during the first and second waves. The primary outcomes assessed were ICU mortality and ICU length of stay (LOS). RESULTS: In 490 patients with comparable ages and comorbidities, no difference in mortality was demonstrated during the second compared with the first wave (65.9% v. 62.5%, p=0.57). ICU LOS was longer in the second wave (10 v. 6 days, p<0.001). More female admissions (67.1% v. 44.6%, p<0.001) and a greater proportion of patients were managed with invasive mechanical ventilation than with non-invasive respiratory support (39.0% v. 14%, p<0.001) in the second wave. CONCLUSIONS: While clinical characteristics were comparable between the two waves, a higher proportion of patients was invasively ventilated and ICU stay was longer in the second. ICU mortality was unchanged

    Prognostic value of biochemical parameters among severe COVID-19 patients admitted to an intensive care unit of a tertiary hospital in South Africa

    Get PDF
    Background: Data on biochemical markers and their association with mortality rates in patients with severe coronavirus disease 2019 (COVID-19) admitted to intensive care units (ICUs) in sub-Saharan Africa are scarce. An evaluation of baseline routine biochemical parameters was performed in COVID-19 patients admitted to the ICU, in order to identify prognostic biomarkers. Methods: Demographic, clinical, and laboratory data were collected prospectively from patients with PCR-confirmed COVID-19 admitted to the adult ICU of a tertiary hospital in Cape Town, South Africa, between October 2020 and February 2021. Robust Poisson regression methods and the receiver operating characteristic (ROC) curve were used to explore the association of biochemical parameters with severity and mortality. Results: A total of 82 patients (median age 53.8 years, interquartile range 46.4–59.7 years) were enrolled, of whom 55 (67%) were female and 27 (33%) were male. The median duration of ICU stay was 10 days (interquartile range 5–14 days); 54/82 patients died (66% case fatality rate). Baseline lactate dehydrogenase (LDH) (adjusted relative risk 1.002, 95% confidence interval 1.0004–1.004; P = 0.016) and N-terminal pro B-type natriuretic peptide (NT-proBNP) (adjusted relative risk 1.0004, 95% confidence interval 1.0001–1.0007; P = 0.014) were both found to be independent risk factors of a poor prognosis, with optimal cut-off values of 449.5 U/l (sensitivity 100%, specificity 43%) and 551 pg/ml (sensitivity 49%, specificity 86%), respectively. Conclusions: LDH and NT-proBNP appear to be promising predictors of a poor prognosis in COVID-19 patients in the ICU. Studies with a larger sample size are required to confirm the validity of this combination of biomarkers

    Haematological predictors of poor outcome among COVID-19 patients admitted to an intensive care unit of a tertiary hospital in South Africa

    Get PDF
    BACKGROUND: Studies from Asia, Europe and the USA indicate that widely available haematological parameters could be used to determine the clinical severity of Coronavirus disease 2019 (COVID-19) and predict management outcome. There is limited data from Africa on their usefulness in patients admitted to Intensive Care Units (ICUs). We performed an evaluation of baseline haematological parameters as prognostic biomarkers in ICU COVID-19 patients. METHODS: Demographic, clinical and laboratory data were collected prospectively on patients with confirmed COVID-19, admitted to the adult ICU in a tertiary hospital in Cape Town, South Africa, between March 2020 and February 2021. Robust Poisson regression methods and receiver operating characteristic (ROC) curves were used to explore the association of haematological parameters with COVID-19 severity and mortality. RESULTS: A total of 490 patients (median age 54.1 years) were included, of whom 237 (48%) were female. The median duration of ICU stay was 6 days and 309/490 (63%) patients died. Raised neutrophil count and neutrophil/lymphocyte ratio (NLR) were associated with worse outcome. Independent risk factors associated with mortality were age (ARR 1.01, 95%CI 1.0–1.02; p = 0.002); female sex (ARR 1.23, 95%CI 1.05–1.42; p = 0.008) and D-dimer levels (ARR 1.01, 95%CI 1.002–1.03; p = 0.016). CONCLUSIONS: Our study showed that raised neutrophil count, NLR and D-dimer at the time of ICU admission were associated with higher mortality. Contrary to what has previously been reported, our study revealed females admitted to the ICU had a higher risk of mortality

    Cardiopulmonary disease as sequelae of long-term COVID-19: Current perspectives and challenges

    Get PDF
    COVID-19 infection primarily targets the lungs, which in severe cases progresses to cytokine storm, acute respiratory distress syndrome, multiorgan dysfunction, and shock. Survivors are now presenting evidence of cardiopulmonary sequelae such as persistent right ventricular dysfunction, chronic thrombosis, lung fibrosis, and pulmonary hypertension. This review will summarize the current knowledge on long-term cardiopulmonary sequelae of COVID-19 and provide a framework for approaching the diagnosis and management of these entities. We will also identify research priorities to address areas of uncertainty and improve the quality of care provided to these patients

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation
    corecore